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Abstract
Near-infrared spectroscopy (NIRS) is a potential, field-portable wood identification 
tool. NIRS has been studied as tool to identify some woods but has not been tested 
for Dalbergia. This study explored the efficacy of hand-held NIRS technology to 
discriminate, using multivariate analysis, the spectra of some high-value Dalbergia 
wood species: D. decipularis, D. sissoo, D. stevensonii, D. latifolia, D. retusa, all 
of which are listed in CITES Appendix II, and D. nigra, which is listed in CITES 
Appendix I. Identification models developed using partial least squares discrimi-
nant analysis (PLS-DA) and soft independent modeling by class analogy (SIMCA) 
were compared regarding their ability to answer two sets of identification questions. 
The first is the identification of each Dalbergia species among the group of the six 
above, and the second is the separation of D. nigra from a single group comprising 
the other species, grouping all Dalbergia as one class. For this latter study, spectra 
of D. cearensis and D. tucurensis were added to the broader Dalbergia class. These 
spectra were not included in the first set because the number of specimens was not 
enough to create an exclusive class for them. PLS-DA presented efficiency rates 
of over 90% in both situations, while SIMCA presented 52% efficiency at species-
level separation and 85% efficiency separating D. nigra from other Dalbergia. It was 
shown that PLS-DA approaches are far better suited than SIMCA for generating a 
field-deployable NIRS model for discriminating these Dalbergia.
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Introduction

Brazil is home to one of the most diverse and most threatened biomes in the world, 
the Atlantic Forest (Stehmann et al. 2009; Myers et al. 2000), and the rare Dalbergia 
nigra (Vell.) Benth. is the flagship threatened species of this forest, now only rarely 
found across its former range from southern Bahia to northern São Paulo. The wood 
of D. nigra and other 303 Dalbergia species is distributed worldwide, 39 species in 
Brazil, including trees, shrubs and vines (The Plant List 2013; Carvalho 1997). D. 
nigra is also known as Brazilian rosewood, jacarandá-da-Bahia, caviúna, palisan-
dre and jaracandá-preto (Carvalho 1997) and is widely used for furniture and musi-
cal instruments (Lorenzi 1992), but it has been overexploited, leading to listing in 
Appendix I of the Convention on International Trade in Endangered Species of Wild 
Fauna and Flora (CITES). D. nigra was the first tree species ever included in this 
appendix, though other Dalbergia species were listed in Appendix II and III (CITES 
1992). In an effort to improve global protection for the genus and recognition of the 
difficulty in identifying Dalbergia woods at the species level, all species of Dalber-
gia were included in CITES Appendix II except for D. nigra, which remained in 
Appendix I (CITES 2017).

Seized logs normally do not retain characteristic morphological features anymore 
such as leaves, seeds and flowers making it almost impossible to identify the species 
and the geographic origin (Espinoza et al. 2015). The difficulty in identifying speci-
mens at checkpoints facilitates the illegal timber trade, expands deforested areas and 
destroys local communities (UNODC 2016).

Although many species are threatened with extinction and their exploitation is 
prohibited, it is still possible to find them in the illegal market. One of the causes 
of the overexploitation is government inability to control wood trade. The most 
demanding problem is definitive identification of species at checkpoints (UNODC 
2016). Several methodologies are being studied to find the most suitable tool capa-
ble of identifying specimens at species level quickly and in situ.

Species-level separation within Dalbergia has long been desirable, but with a few 
exceptions it is not possible by wood anatomy alone (Gasson et al. 2010; Wiemann 
and Ruffinatto 2012). Among the Latin-American species of Dalbergia, anatomi-
cally, D. cearensis Ducke is easily identifiable because it is the only one having a 
vessel frequency of over ten vessels  mm−2 (Miller and Wiemann 2006; Gasson et al. 
2010).

In 2006, Miller and Wiemann suggested that it is possible to distinguish D. 
nigra and D. spruceana Benth. using water and ethanol fluorescence of heartwood 
extracts, although the same method could not differentiate D. nigra, D. granadillo 
Pittier and D. stevensonii Standl. due to the similarity in the density and fluores-
cence characteristics of these species (Guzman et  al. 2008). Since Dalbergia spe-
cies contain a variety of phenolic compounds, Kite et al. (2010) suggested that the 
concentration of these compounds may vary among the species and provide a way to 
distinguish between them.

Lancaster and Espinoza (2012) reported on the discrimination of 13 spe-
cies, including 10 of Dalbergia, using direct analysis in real time coupled with 



1 3

Wood Science and Technology 

time-of-flight (DART-TOF) mass spectrometer. In this work, the identity of 15 D. 
nigra specimens was confirmed. The methodology was able to differentiate speci-
mens of D. nigra and of D. spruceana, but the unique compound present in D. 
nigra, dalnigrin, could not be distinguished from its isomer, kuhlmannin, present 
in D. spruceana (Kite et al. 2010). In 2015, Espinoza et al. reported that D. nigra 
could be distinguished from look-alike species such as D. spruceana, D. steven-
sonii and D. tucurensis Donn. Sm, also using DART-TOF.

Near-infrared spectroscopy (NIRS) when associated with multivariate analy-
ses is an analytical methodology that brings information on high-weight chemi-
cal groups present in cellulose, hemicellulose, lignin and extractives molecules 
(resin, gums, etc.) in wood. However, due to the overlapped nature of the NIR 
spectra, this methodology does not allow to specify individual bands related to 
specific chemical bonds or compounds in complex samples (i.e., wood) (Schwan-
ninger et al. 2011), which justify its association with chemometric methods. The 
main NIRS advantages are: it requires minimum sample preparation and has 
fast response as diffuse reflectance is used (Pasquini 2003; Burns and Ciurczak 
2007). NIRS combined with multivariate analysis is a powerful tool for classify-
ing and quantifying a wide variety of materials such as identification of plant part 
composition of forest logging and discrimination of Fagales wood samples from 
Malpighiales (Acquah et  al. 2016; Carballo-Meilan et  al. 2014). Several NIRS 
models have been created and improved to identify wood species. Adedipe et al. 
(2008) used NIRS and soft independent modeling of class analogies (SIMCA) 
to classify red oak and white oak species. Pastore et al. (2011) and Braga et al. 
(2011) have proposed partial least squares discriminant analysis (PLS-DA) iden-
tification methods to discriminate Swietenia macrophylla King (mahogany or big-
leaf mahogany) from three look-alike species: Carapa guianensis Aubl., Cedrela 
odorata L. and Micropholis melinoniana Pierre, and more recent works added 
additional species (Soares et al. 2017) and mahogany’s geographic origin (Bergo 
et  al. 2016). Lazarescu et  al. (2016) could distinguish western hemlock (Tsuga 
heterophylla (Raf.) Sarg. from amabilis fir (Abies amabilis (Douglas ex Loudon) 
J. Forbes) using near-infrared scans and analyzing the data with PLS-DA and 
artificial neural networks (ANN). Despite the richness of this previous literature, 
Dalbergia has not been studied using NIRS for wood identification.

The principal aim of this work is to demonstrate the possibility of the identifica-
tion of Dalbergia species based on NIRS spectra obtained with a hand-held spec-
trometer. The spectrometer weighs 1.2 kg, and it is simple to manipulate. Enforce-
ment agents can be quickly trained to acquire the spectra from the suspicious sample 
and read the results at checkpoints. In addition, two multivariate methods, PLS-DA 
and SIMCA, were evaluated to develop identification models and two approaches 
will be compared: (1) separate the wood of six Dalbergia at the species level and 
(2) separate the CITES Appendix I D. nigra from a combined class of the other 
CITES Appendix II Dalbergia, without attempting species-level separation within 
the Appendix II group. Providing NIRS-based identification models deployable 
on a hand-held spectrophotometer for Dalbergia in general and D. nigra specifi-
cally improves global capacity to enforce CITES regulations and can empower law 
enforcement to make field-level forensic evaluations in real time.
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Materials and methods

Sample preparation

In this work, eight species of Dalbergia were studied. Spectra were obtained from 
specimens at the Forest Products Laboratory, Madison, USA, and the Forest Prod-
ucts Laboratory, Brasilia, Brazil (Table 1).

For each sample, a randomly selected surface of the heartwood with no apparent 
defect was sanded with grit 80. As the diffused light varies with surface roughness, 
this procedure homogenizes the surface. Spectra were taken only after carefully 
removing sanding dust from the surface to be measured. This procedure embeds 
wood surface information (the face variable, see Braga et  al. 2011) in the species 
discrimination model so that any face can be tested in the field. A sample surface 
area has to be at least 1.2 cm × 1.2 cm, the same area from which the diffuse reflec-
tance light comes.

Near‑Infrared Spectroscopy measurements

The near-infrared spectra were collected with the microPHAZIR™ RX Analyzer, a 
hand-held spectrometer, over the range of 1595–2396 nm with a resolution of 8 nm. 
For each one of the 249 samples, three spectra in different points were collected, 
totalizing 747 spectra not averaged. The D. cearensis and D. tucurensis specimens 
were not used in the species-level discrimination study because the number of speci-
mens was not enough to build a robust model for them (Pastore et al. 2011; Braga 
et  al. 2011), but they were used to build the general model for Dalbergia nigra 
discrimination.

To enable the appropriate data analysis, the spectra data were transferred from 
the device to a laptop, and data analysis was carried out in MATLAB R2011 and 
PLS_Toolbox  7.03. After model optimization, the conditions established in the 
PLS_Toolbox were reproduced in the equipment’s software (Thermo microP-
HAZIR Admin, version 4.0219) and the resulted model was transferred back to the 
spectrometer.

Table 1  Data of Dalbergia 
specimens according to species

Species No. of speci-
mens/spectra

Origin

D. cearensis Ducke 6/18 Brazil
D. tucurensis Donn. Sm. 9/27 Guatemala
D. decipularis Rizzini & A. Mattos 16/48 Brazil
D. sissoo DC. 19/57 India
D. stevensonii Standl. 14/42 Belize
D. latifolia Roxb. 19/57 Indonesia
D. retusa Hemsl. 22/66 Panama
D. nigra (Vell.) Benth 144/432 Brazil
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Data preprocessing

Prior to the development of the discrimination or classification models, it is important 
to preprocess the data because the near-infrared spectrum contains redundant informa-
tion that pollutes the usable chemical information. Through preprocessing, variations 
regarding baseline shifts due to additive and multiplicative scattering can be eliminated 
or at least minimized (Wise et al. 2006), keeping the pertinent chemical information 
for species identification. According to the previous works of this research group, all 
the data were preprocessed by the combination of first derivative using Savitzky–Golay 
smoothing (using an eleven-point filter width and second-order polynomial), standard 
normal variate (SNV) and mean centering.

Chemometric modeling

The identification of the Dalbergia species was evaluated by two distinct chemometric 
approaches. The first one was based on SIMCA, which is one of the most applied clas-
sification models. The second approach was a discrimination model by PLS-DA algo-
rithm. Both models have already been described in detail (Soares et al. 2017; Martins 
et al. 2017; De Maesschalck et al. 1999; Flåten et al. 2004; Branden and Hubert 2005). 
Therefore, in this work just a brief description of their properties and differences will be 
presented. However, as outlier detection plays an important role in model development 
and validation, it is discussed in more detail in the Electronic Supplementary Material.

Soft independent modeling by class analogy (SIMCA)

SIMCA is a classification method that is based on the class modeling approach using 
principal components analysis (PCA). Initially, a PCA model is developed for each 
class separately to define the confidence regions in the score space of PCA, considering 
the variability of the samples in the training set (Branden and Hubert 2005; De Maess-
chalck et al. 1999). The number of principal components of the PCA model of each 
class is usually determined by cross-validation and chosen as the one that minimizes 
the classification errors in the training set. During the validation, an unknown speci-
men is projected in the PCA model of each class and the distance (d) is determined by 
Eq. 1. The sample is assigned to the class that presents the lower d. Otherwise, if the 
sample exceeds the critical value for d in all classes, it is classified as an outlier or not 
belonging to any predefined class. The distance (d) in relation to the PCA models of the 
predefined classes, wherein di,w is related to a sample i and class w, is determined as:

where T2

i,w
 is the Hotelling statistics, Qi,w is sum of the squares of the PCA residuals, 
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 and Qcritical,w are the corresponding 99.9% confidence level thresholds of T2 

(1)di,w =

√

√

√

√

√

(

T2

i,w

T2

critical,w

)2

+

(

Qi,w

Qcritical,w

)2



 Wood Science and Technology

1 3

and Q for the class w, respectively. More details of the determination of the T2 and 
Q and their critical values can be found in the Electronic Supplementary Material 
(Ballabio and Todeschini 2009).

Partial least squares for discrimination analysis (PLS‑DA)

In contrast to the SIMCA model, in PLS-DA the NIR spectra of all the Dalbergia 
species (classes) in the training set are organized in a single X(I,M) matrix, where I 
represents the total number of spectra in X and M accounts for the number of wave-
lengths of the NIR spectrum. The discrimination model is developed by the correla-
tion of this spectral matrix X with a y(I,1) vector that indicates if the sample belongs 
to the species to be discriminated—class value of 1—or the other species—class 
value of 0. As a result, the PLS-DA models perform a binary discrimination, so that 
a total of six models were built to discriminate the studied species. In each model, 
two-thirds of samples were randomly selected to be part of the training group. The 
remaining samples were used as the validation group; these are the samples that will 
test the discrimination model created according to the training samples. The three 
spectra of each sample are only in one of the groups, either calibration or validation, 
so the spectra of the same sample are not validated against themselves. The number 
of latent variables A was determined through cross-validation according to Soares 
et al. (2017), who suggested the use of the root mean square error of cross-validation 
(RMSECV) for the minimization of the errors in the class value estimate and which 
provide a larger separation between the estimated values for the classes in the train-
ing (Soares et al. 2017; Martins et al. 2017).

PLS-DA identification of outliers was performed based on the Hotelling T2, Q 
residuals and the confidence limits for the estimation of the estimated class values, 
as described by Soares et al. (2017) and detailed in the Electronic Supplementary 
Material.

After the model optimization, a discrimination threshold (DT) was estimated 
based on the dispersion of the estimated class values obtained for the training set in 
order to minimize the occurrence of false positive and false negative errors (Botelho 
et al. 2015; Soares et al. 2017). A detailed description of the determination of the 
DT can be found in Soares et al. (2017). It is important to note that when the number 
of specimens/spectra is significantly different between the species/classes, the prob-
abilities of occurrence will be different in the training set (a priori probabilities), 
which can introduce a bias in the discrimination threshold and influence the discrim-
ination. Given that the differences in the number of specimens observed in Table 1 
express a limitation of obtaining, approximately, the same number of specimens for 
all species and not a result of their probabilities of occurrence, the determination of 
the discrimination threshold was performed using all classes with the same prob-
abilities of occurrence, as detailed by Soares et al. (2017).

The identification of the class of a validation/unknown sample is determined only 
after the analysis in all PLS-DA models. Therefore, a hypothetic sample i is identi-
fied as belonging to a class 1 only if its estimated class value was larger than the DT 
when the sample is analyzed in the PLS-DA model for class 1 and simultaneously 
present class values lower than the DT for the models of the other classes.
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Model performance metrics

To check the model performance, the samples from the validation set were used 
for the determination of the figures of merit of the models. Considering a hypo-
thetic class w, these figures of merit can be resumed in five different parameters:

(FNR) false negative rate, which is the percentage of the samples of the class 
w identified as belonging to other classes;
(FPR) false positive rate, the percentage of the samples of other classes identi-
fied as belonging to the class w;
(STR) sensitivity rate, the percentage of samples belonging to w correctly 
identified as w;
(SPR) specificity rate, the percentage of samples belonging to the other classes 
correctly identified the other classes; and
(EFR) efficiency rate, estimated as 100% minus FNR and FPR.

Details of these calculations can be found in previous papers of this research 
group (Soares et al. 2017; Martins et al. 2017).

Results and discussion

Figure  1 presents the NIR spectra of the training samples before and after the 
preprocessing by the first derivative and SNV. In the raw spectra (Fig. 1-a), one 
can easily see the significant variation of the baseline, caused by the presence of 
additive and multiplicative scattering. This variation is mostly a result of physi-
cal effects due to the difference in the sample surface. After the preprocessing, 
the different levels of scattering were corrected or at least minimized, leading 
to a sharper line (Fig. 1-b). Visible differences between the samples of preproc-
essed spectra can be observed in the following regions of NIRS: 1640–1760, 
1870–1910 and 2080–2160 nm. Most of these variations would be a result of the 
differences in the chemical composition between the species. However, due to the 
overlap between the bands in the NIR spectra, it is very difficult to infer about the 
chemical compounds responsible for these differences and assimilate these varia-
tions in NIR spectra to specific species, justifying the necessity of the multivari-
ate analysis.

Species‑level discrimination

It was sought to separate D. decipularis, D. sissoo, D. stevensonii, D. latifolia, D. 
retusa and D. nigra at the species level using PLS-DA and SIMCA models. As 
previously mentioned, due to the small number of specimens the D. cearensis and 
D. tucurensis species were not included in this analysis.
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Partial least square discrimination analysis: PLS‑DA

In Table 2, the number of latent variables necessary to discriminate each species in 
relation to the others is presented. The explained variance in the X matrix and the 
y vector with these numbers of latent variables were 99.88%—D. retusa, 99.02%—
D. stevensonii, 99.92—D. sissoo, 98.83%—D. nigra, 99.87%—D. latifolia and 
99.92%—D. decipularis. In general, except for D nigra and D stevensonii, it was 
observed that a high number of latent variables (> 18) were required for four spe-
cies, which might be related to the spectral variation indicating that samples of these 

Fig. 1  Spectral data of a raw spectra and b SNV and derivative spectra
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species are more similar among them and/or high variation in spectral information 
within the same species, justifying the use of more latent variables. Information 
about the amount of explained variance in the first 10 latent variables is shown in 
Table S1 in the Electronic Supplementary Material. In addition, Table 2 shows the 
number of spectra excluded as outliers in classes 1 or 0 in both training and valida-
tion phases. The percentage of outlier identification varies from 1.0 to 5.3%, being 
that the model with the largest occurrence of outliers was the discrimination of D. 
decipularis, even though this percentage of outliers can be considered acceptable. In 
addition, the identification of a sample as an outlier does not mean a wrong result; it 
represents an inconclusive identification, showing that this specimen presents some 
characteristics that make it distinct from the ones included in the training set. There-
fore, an alternative analysis should be performed to confirm the identification of the 
species of this specimen.

Figure  2 shows the discrimination between the target species (class value = 1) 
from the other species (class value = 0) in each discrimination model. In Fig. 2, the 
validation outliers are represented but they were excluded from the figures of merit 
determination, which are presented in Table 3. Figure 2a shows the discrimination 
model of D. nigra, and Fig. 2b shows the discrimination model of D. latifolia. In 
Fig. 2 each point represents one spectrum.

The D. nigra model (Fig. 2-a) shows the highest efficiency rate (EFR = 98.6%). 
Each inverted triangle represents one spectra of D. nigra, and the inverted triangle 
cluster in the top left represents the D. nigra specimens used to calibrate the model. 
The inverted triangle cluster in the right is the spectra of D. nigra used in the valida-
tion. The top and bottom lines represent the limit of y value. Specimens with y value 
above the top line and below the bottom line are considered outliers. The estimated 
class value near 0.5 line represents the discrimination limit. According to the model, 
the specimens above the discrimination limit are D. nigra and the others are not D. 
nigra. The two inverted triangles below the discrimination limit in the validation 
samples represent the two false negative specimens, specimens that are D. nigra but 
the model had classified as not. The D. nigra model does not show false positives 
and correctly discriminated 221 specimens.

Even the models with the lowest efficiency rates—D. latifolia and D. retusa—
show a high correct classification rate—certainly high enough to provide meaning-
ful and reliable real-time feedback to law enforcement in a field-screening context.

Table 2  Results for the 
number of latent variables and 
outliers identified in each of 
the PLS-DA models for six 
Dalbergia species

Species No. of 
latent vari-
ables

Outliers excluded 
in the training set

Outliers excluded 
in validation set

D. nigra 12 7 5
D. retusa 19 8 4
D. sissoo 21 5 4
D. latifolia 19 5 5
D. decipularis 20 22 13
D. stevensonii 13 10 6
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D. latifolia model presents the lowest efficiency rate, which has only two false 
negative but 19 false positives, leading to specificity rate of 90.7%, sensitivity rate 
of 88.9% and efficiency rate of 79.6%. These results suggest that the variation in 
the chemical characteristics within D. latifolia is greater than in any other species 
studied in this work. Dalbergia latifolia grows across a wide geographic range, from 
India to Southeast Asia and Melanesia. The authors intend to, in the near future, 

Fig. 2  Discrimination models 
of Dalbergia specimens.—a: 
D. nigra.—b: D. latifolia. 
Upside down triangle: D. nigra, 
asterisk: D. retusa, square: D. 
sissoo, empty circle: D. latifolia, 
lozenge: D. decipularis, filled 
circle: D. stevensonii 

Table 3  Figures of merit of the six Dalbergia PLS-DA models

1 FP number of false positives, 2FN number of false negatives, 3TP number of true positives, 4TN number 
of true negatives, 5FNR false negative rate, 6FPR false positive rate, 7SPR specificity rate, 8STR selectiv-
ity rate, 9EFR efficiency rate

Figures of merit Species

D. nigra D. retusa D. sissoo D. latifolia D. decipularis D. stevensonii

FP1 0 0 5 19 5 7
FN2 2 3 0 2 0 0
TP3 142 14 18 16 14 12
TN4 79 207 201 186 196 203
FPR5 (%) 0.0 0.0 2.4 9.3 2.5 3.3
FNR6 (%) 1.4 17.6 0.0 11.1 0.0 0.0
SPR7 (%) 100 100 97.6 90.7 97.5 96.7
STR8 (%) 98.6 82.4 100.0 88.9 100.0 100.0
EFR9 (%) 98.6 82.3 97.6 79.6 97.5 96.7
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collect more Dalbergia specimen spectra, including D. latifolia, to build a more 
robust model.

Soft independent model of class analogy: SIMCA

All models were developed with the entire spectral range, 19, 16, 14, 12, 11 and 11 
principal components for the modeling of the species D. nigra, D. retusa, D. sissoo, 
D. latifolia, D. decipularis and D. stevensonii, respectively.

Table 4 indicates the results of the validation set using SIMCA. This table indi-
cates all the results obtained by the SIMCA model. For instance, looking in the D. 
nigra column it can be observed how the samples of this species were classified, 
which gives us the information of how many samples of that species were correctly 
classified and the number of false negative results. Among all 141 spectra from D. 
nigra specimens, 140 were correctly classified, leaving just one false negative error, 
which indicates that this model presents good results in terms of high selectivity rate 
(STR) and low false negative rate (FNR). On the other hand, taking the first line of 
the table, it can be observed that 28 spectra from other species were wrongly classi-
fied as D. nigra, representing false positive errors (FPR) that contribute to high FPR 
and low SPR.

Through the confusion matrix, it is possible to calculate the figures of merit of 
each species, shown in Table 5. According to these results, it is possible to check 
which species are most similar according to each model.

Observing Tables 4 and 5, it is possible to verify which species are most simi-
lar among them. D. retusa and D. stevensonii are the species most confused with 
D. nigra. Out of 21 D. retusa spectra, 10 were classified as D. nigra, and from the 
12 D. stevensonii spectra, 6 were also classified as D. nigra. This result endorses 
a study on anatomical features that indicates 33 qualitative similar features among 
those three species indicating high similarity among them (Gasson et al. 2011). In 
addition, a study considering quantitative wood anatomy and PCA could not distin-
guish a group of Dalbergia that includes D. nigra and D. stevensonii (Gasson et al. 
2010). In addition, D. nigra and D. stevensonii have similar fluorescence character-
istics (Camargos et al. 2001).

Table 4  Results for the classification of the species-level Dalbergia by the SIMCA model

Actual class

D. nigra D. retusa D. latifolia D. sissoo D. decipularis D. stevensonii

Classified as D. nigra 140 10 7 4 1 6
Classified as D. retusa 0 9 0 0 0 1
Classified as D. latifolia 1 0 8 1 3 2
Classified as D. sissoo 0 2 1 13 0 0
Classified as D. decipu-

laris
0 0 2 0 11 0

Classified as D. steven-
sonii

0 0 0 0 0 3
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When using PLS-DA, the D. nigra model was the most reliable model, but when 
using SIMCA, it is only the second best with an efficiency rate of 66%, a considera-
ble drop in efficiency when compared to PLS-DA (98.6%). Only one D. nigra speci-
men was misidentified, being classified as D. latifolia. However, 28 samples that are 
not D. nigra were predicted as being this species, leading to a low EFR.

All SIMCA model EFRs were worse than PLS-DA EFRs, and even the highest 
EFR from the SIMCA models (D. decipularis, 72.3%) is 7.3% lower than the worst 
model from PLS-DA (D. latifolia, 79.6%). These results suggest that the clusters of 
the species are overlapped due to the high similarity, the considerable variation in 
the specimens of the same species or both factors.

Discrimination of Dalbergia nigra from Dalbergia spp.

In this approach focus was put on discriminating D. nigra from seven other Dalber-
gia species grouped regardless of species, using PLS-DA and SIMCA. Although all 
Dalbergia species are listed in the Appendix of CITES, D. nigra is listed in Appen-
dix I, which is the most restrictive and prohibits the international trade in specimens 
of these species except when the purpose of the import is not commercial (CITES 
2017). Thus, in this model, only two classes were created: D. nigra that was consid-
ered the target class with a class value of 1 and Dalbergia spp. with a class value of 
0. Dalbergia spp. includes D. cearensis, D. tucurensis, D. decipularis, D. sissoo, D. 
stevensonii, D. latifolia and D. retusa.

Partial least square discrimination analysis

In this case, the PLS-DA model required 16 latent variables, which is consistent with 
a great variability present in the samples, especially the class Dalbergia spp. that 
congregates seven distinct Dalbergia species. The distribution of the estimated class 
values is presented in Fig. 3. This distribution shows that, except for some clear out-
liers that present abnormally negative class values (around -1), the dispersions in the 

Table 5  Figures of merit of species-level Dalbergia SIMCA analysis

Figures of merit Species

D. nigra D. retusa D. latifolia D. sissoo D. decipularis D. stevensonii

FP 28 1 7 3 2 0
FN 1 12 10 5 4 9
TP 140 9 8 13 11 3
TN 56 203 200 204 208 213
FPR (%) 33.3 0.5 3.4 1.5 1.0 0.0
FNR (%) 0.7 57.1 55.5 27.8 26.7 75.0
SPR (%) 66.7 99.5 96.6 98.5 99.0 100.0
STR (%) 99.3 42.9 44.5 72.2 73.3 25.0
EFR (%) 66.0 42.4 41.1 70.7 72.3 25.0
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training and validation sets look similar, revealing that there is no overfitting in the 
model. In Fig. 3, each inverted triangle (D. nigra) and each asterisk (D. spp.) repre-
sent one spectrum of the respective specimen. The top and bottom lines represent 
the limit of y value. Specimens with y value above the top line and below the bottom 
line are considered outliers. The estimated class value near 0.5 line represents the 
discrimination limit. According to the model, specimens above the discrimination 
limit are discriminated as D. nigra and those below the discrimination limit as D. 
spp.

Nine and 13 outlier spectra were observed in the training and validation set, 
respectively, which represents the exclusion of only 1.8 and 5.2% of the spectra in 
each set. Considering the heterogeneity present in the specimens, this percentage of 
exclusion can be considered acceptable for practical purposes.

Figure  3 and Table  6 indicate the reliability of the discrimination of D. nigra 
from other Dalbergia species. Only three misclassifications—2 FP and 1 FN—out 
of 233 spectra (78 specimens) were in validation set. The two FP are the two aster-
isks above the discrimination limit, which are not D. nigra but the model discrimi-
nated them as D. nigra. The FP is the inverted triangle below the discrimination 

Fig. 3  Discrimination between 
D. nigra and D. spp. for calibra-
tion and validation set. Upside 
down triangle: D. nigra; aster-
isk: D. spp

Table 6  Figures of merit for 
PLS-DA discrimination between 
D. nigra versus Dalbergia spp.

Figures of merit D. nigra × Dalbergia spp.

FP 2
FN 1
TP 140
TN 90
FPR (%) 2.2
FNR (%) 0.7
SPR (%) 97.8
STR (%) 99.3
EFR (%) 97.1



 Wood Science and Technology

1 3

limit; this inverted triangle represents one D. nigra specimen discriminated as not D. 
nigra. Thus, the FPR and FNR are relatively small, leading to a high efficiency rate 
(97.1%).

Soft independent modeling of class analogy

Tables 7 and 8 indicate how the SIMCA model responded to the validation set. Out 
of 141 D. nigra specimens, 134 were correctly classified, but 7 were not—TP: 134 
and FN: 7. Out of 105 Dalbergia spp. specimens, 95 were correctly classified as not 
D. nigra, but 10 specimens of Dalbergia spp. were classified as D. nigra—TN: 95 
and FP: 10—leading to an efficiency rate of 85.5%. This result represents an increase 
in efficiency of approximately 33% in relation to the SIMCA species-level model.

As with the species-level models, PLS-DA showed better EFR, STR, and SPR 
than SIMCA in separating D. nigra from Dalbergia spp., presenting 23% more EFR.

Spectrometer use

The use of a hand-held spectrometer is very simple, and result interpretation is sim-
ple as well. After specimen preparation (see above), law enforcement agent must 
point the spectrometer toward the heartwood surface and wait for approximately 
15  s, and then the result will show on the spectrometer screen. Agents will not 
have to study the spectra or to develop the model. The model will already be at the 

Table 7  Classification results 
for D. nigra versus Dalbergia 
spp. according to SIMCA model

Predicted Actual class

D. nigra class Dalbergia 
spp. class

Predicted as D. nigra 134 10
Predicted as Dalbergia spp. 7 95

Table 8  Figures of merit of 
SIMCA model for D. nigra 
versus Dalbergia spp.

Figures of merit Species

D. nigra. Dalbergia spp.

FP 10 7
FN 7 10
TP 134 95
TN 95 134
FPR (%) 9.5 5.0
FNR (%) 5.0 9.5
SPR (%) 94.3 98.3
STR (%) 98.3 94.3
EFR (%) 85.5 85.5
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portable spectrometer, and it will automatically indicate to which species the speci-
men belongs to. The result interpretation is as simple as it can be; on the spectrom-
eter screen it will be written: “It is D. nigra” or “It is D. retusa”.

If a suspicious specimen is not Dalbergia, the result is “not identified”.

Conclusion

Six different visually confusable species of Dalbergia from various countries were 
separated at the species level using the simple, rapid and reliable NIRS method. 
Evaluation of PLS-DA and SIMCA modeling demonstrated higher efficiency of 
PLS-DA models. Specimens of seven Dalbergia species treated as a single Dalber-
gia spp. group could be discriminated from D. nigra wood with high efficiency rate 
(97%). Similarly, the efficiency rate for the species-level D. nigra model was also 
high (98%). Although these models present similar efficiencies, the species level 
includes a lower number of species due to the necessity of more specimens in order 
to develop individual discrimination models for each species. On the other hand, the 
model for discrimination of D. nigra × D. spp. focuses on the species included in the 
Appendix I of CITES. The present results, obtained with a hand-held device, clearly 
show that this method is ready to be tested by law enforcement in the field for the 
identification of D. nigra at checkpoints. Expanding both sample breadth (number of 
taxa) and sample depth (number of specimens per taxon) is emphasis of future work 
and will permit the development of more broadly applicable groups of discrimina-
tion models. Broad development and deployment of hand-held wood identification 
technologies is one tangible piece of a global cooperative effort to apply forensic 
wood science in the fight against illegal logging. This work corroborates previous 
results found by the team for different wood families that NIRS associated with 
PLS-DA is a tool for timber trade control and species conservation.
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